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Abstract. Model-based diagnosis is now advanced to the point au-
tonomous systems face some uncertain and faulty situations with
success by correctly identifying sets of potential component faults.
The next step toward more autonomy is to have the system recover-
ing itself after faults occur, a process known as model-based recon-
figuration. After faults occur, given a prediction of what the nominal
expected state of the system should be and the belief state that results
from the diagnosis operation, this paper shows how to automatically
determine the functional deficiencies induced by the faults. These de-
ficiencies are characterized in the case of uncertain state estimates.
A methodology is then presented to determine the reconfiguration
goals from the deficiencies. Finally, a recovery process interleaves
planning and model predictive control to restore the lost functionali-
ties in prioritized order.

1 Introduction

Model-based autonomous systems already face faulty situations with
some success: they detect and diagnose faults by either identifying
potential candidates for their own physical state [6] or reasoning on
their structural and behavioral knowledge [5]. The next step toward
more autonomy is to have the system recovering itself after faults oc-
cur, a process known as model-based reconfiguration3 (MBReconf).
Automated reconfiguration comprehends three steps: goal identifica-
tion, goal selection, recovery. Goal identification searches for a set
of potential states of the system where the fault effects are inhibited;
goal selection is the process of deciding the best of these states, de-
noted goal states; recovery searches for the chain of actions that may
turn the physical system state into the desired goal states. Recent ar-
chitecture design for autonomy [10] puts the goal identification and
selection processes outside the scope of a model-based diagnoser, in
the hands of upper decisional levels. The aim of this paper is to pro-
duce an automated goal identification/selection/recovery methodol-
ogy that takes better advantage of the system model. Due to several
factors, MBReconf is a challenging problem:
� The state of the system cannot be uniquely determined in all sit-

uations. Recent model-based monitoring/diagnosis systems track
several potential non-faulty/faulty state estimates simultaneously
[11, 2]. Moreover, the set of state estimates is the result of a selec-
tion process as the total number of possible states is too large to
be explored. The ambiguity is however mitigated by the fact that
the number of state estimates is typically small.
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For now, most embedded controllers include pre-compiled recovery policies
as part of a rule-based system.

� Faults effects may differ from one state estimate to the other. For
this reason, pre-compiled policies may fail recovering the system
by proposing an improper command when the state is uncertain.� Nowadays, embedded digitally controlled systems have complex
behaviors characterized by a preeminence of discrete switches in
their dynamics. They are modeled as hybrid systems, that exhibit
both discrete and continuous dynamics.

Referring to the faulty states as the estimates that result from the
diagnosis operation, as opposed to the nominally predicted states,
we propose to compare the faulty states and the predicted states to
determine the functional deficiencies caused by the faults. In this
context, functional deficiencies are variable instances in one or more
predicted states and that have been lost in one or more faulty states.
Our approach aims at minimizing the size of a functionality to re-
cover while maximizing its coverage of the estimates. The contri-
butions of this paper are threefold. First, we show how this strategy
leads to a finite set of disjoint functional deficiencies, and charac-
terize them. Second, we propose a methodology to identify poten-
tial goals from the deficiencies based on a productive analogy with
model-based diagnosis, reasoning at a single point in time, despite
the system continuous dynamics. Third, we show how to interleave
conformant planning and model predictive control to bring the sys-
tem’s hybrid dynamics from the initial faulty (uncertain) state to the
potential goal state.

2 Hybrid Model-Based State Prediction and
Diagnosis

In this section we introduce a comprehensive formalization of model,
state and uncertainty. The autonomous system is considered a model-
based system, i.e. that has a structural and behavioral knowledge of
itself.

Definition 1 (Model-Based System). A model-based system � is a
tuple �	��
��
���
���
���� , where � is a set of modeled components, �
a set of finite discrete variables as component behavioral modes, �
a set of transitions among these modes, � the set of continuous vari-
ables partitionned in state variables ��� , output (observed) variables
��� and input variables (commands) ��� . � is a set of continuous
static/differential equations over � .

In this paper we use a hybrid description of the physical system’s
state. The hybrid state � is the tuple � �!
"#� . Instances of vari-
ables $ in �&%'" are noted �($#)*$,+-� , or $-+ for short. The hybrid
state’s discrete side abstracts the physical system as a set of mode
instances �.)0/�132 154 6'798 where 2 154 6�7:8 is an instance of a vari-
able 6<; � of component 2 1 ; � . The continuous state " is
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if # �� ���%$
if &�# �# � : ���(')�"�*,+ 
 �.- /0�21.3�46587 
 �9- /:��;.<>=�?6� 1.3�465�@ACB�B : 
 B - /D��?�EF1C;94HG * 
 B - ?./IG ��163�J 
 B - /:��163�465ACBLK : 
 B - /D��163�465 * 
 B - ?./MG ��?�E�J 
 B - /D��?�EN1C;H49GA9K6B : 
 K - /D��?�EF1C;94HG *

S.m=closed
J 
 K - /0��1.3�465A K�K : 
 K - /D��163�465 *

S.m=open
J 
 K - /D��?�EN1O;949G�QP AHR : ��- /:�21.3�465 * (

� � 'S�UT
)
JV�W- /:��?�EN1O;949GA9X : ��- /:�2?�EN1O;949G * (

����Y)� T
)
JZ�W- /[��163�465

Input connection:
� � � � B]\ � K

Output connection: ^ � � � B]\ � K� B �%�W_9`Fa� K �%�W_9`Fa
Figure 1. Pressure expansion system

made of instances b + of continuous variables of � � . Observed vari-
ables of � � are noted c (vector d ), and ec (vector ed ) denotes the
measured value. Commands are noted f (vector g ). We consider a
discrete-time model of the form:

� : hi j " �>kIlnm � ) oUp " �>k � 
Cg �>k �.qd �>k � ) r p " �>k � 
Cg �>k � qs t u p " �>k � 
Cg �>k � q (1)

System � ’s behavior is described with rules of the form / 7wv 7 if x ,
where v 7 ; � and x is a conjunction of equalities/inequalities over
functions of variables in � % � . A set y ){z}| � 
�~�~�~ 
6|�� a�� of tran-
sitions is specified for each mode 6 . Each transition | is enabled
according to a guard x , and may trigger with probability � ��| � when-
ever the guard is satisfied. y � � 7 
�� + � denotes the set of transitions that
moves � from � 7 to � + .

Given the ability � has to predict and diagnose its own behav-
ior, we respectively note � � � � the prediction of the hybrid system’s
nominal state, and � � � � the diagnosis result after a fault occurs.
Note that when fault modes are present, the diagnosis may become a
state identification problem, and � � � � , � � � � may result from the
same engine. Uncertainty on the physical system’s state requires
to consider � � � � and � � � � as sets of hybrid states. We denote� ) p � � � � 
�� � � � q .
Example (Pressure expansion system). Figure 1 pictures our case
study: a two valves system that limits water pressure between flow
input �Q� and flow output � . An electric switch � powers valve � �
when pressure ��� equals or exceeds threshold ��� . � � opens when
powered. � , � � and � � have two nominal operational modes open
and closed, and two faulty modes stuck closed, stuck open. ��� and� are measured. ���S�V������� is the only input to the system. �������
denotes the atmospheric pressure.

Our scenario assumes faults occur when the prediction of the nom-
inal state is uncertain4, i.e. the uncertainty on the pressure does not
allow to discriminate between two predicted states5:

; B��� �� �� � ����$
,
����Y)� T
 B - /D��163�465�W- /:��163�465
 K - /D��?�EN1O;949G� B ��$ ,

� K �%$ , � �)$ and
; K ��� �� �� � ����$

,
���('S� T
 B - /0��163�495�W- /:��?�EN1C;H49G
 K - /0��163�495� B ��$ , � K ��$ ,

� ��$
After observing � �M� s(  � ) s

, � returns diagnose, based on the
knowledge of the nominal states above:

; B¡ � ��� ��� � �(��$
,
����YS� T¢M£ - ¤¥�%¦.§9¨ª©9« ©O¬®�¦6¯�°�W- /D��1.3�465
 K - /0��?�EN1O;949G� B �%$ , � K �%$ , � �%$ ,

; K ¡ � ��� ��� � �(��$
,
����'�� T¢8£ - ¤¥�%¦.§9¨ª©H« ©�¬±�¦6¯�°�W- /D��?�EN1O;949G¢�² - ¤¥�%¦.§9¨ª©H« ©�¬±�¦6¯�°� B �S$ , � K �%$ ,

� �%$
and

; R ¡ � ��� ��� � � ��$
,
� � ')� T¢8£ - ¤¥�%¦.§9¨ª©9« ©�¬±³¦6¯�°´ - ¤¥�%¦.§9¨ª©9« ³µ�¯�¶
 K - /:��?�EF1C;94HG� B �%$ , � K �%$ , � �%$

� �· is the faulty state diagnosed from � �¸ while � �· and � � · have been
deduced from � �¸ . Hybrid states in � � � � )*� � �¸ 
�� �¸ � and � � � ��)
� � �· 
�� �· 
�� � · � contain enough information for the autonomous system
to extract its functional deficiencies.

3 Functional Deficiencies

Given a belief on a model-based system � , we extend � � � �
and � � � � by the states probabilities such that � � � � )
�� � �¸ 
�� � � �¸ �� 
�~�~�~ 
 � � � ¸ 
>� � � � ¸ ��� is the set of the ¹ nominally pre-
dicted states, and their associated probabilities, and � � � � )
�� � �· 
�� � � �· �� 
O~�~�~ 
 � �}º· 
�� � �}º· ��� the set of o faulty states from di-
agnosis, and their attached probabilities. Given a variable $ , we note
� �($ � its value in state � . Any set of nominal and faulty states in

�
is

denoted a reconfiguration set. We want to find a set » of prioritized
variable instances in � %�" that are the functional deficiencies be-
tween states in � � � � and � � � � , and thus need to be recovered. The
general idea that is developed in this section has been inspired by the
model-based reconfiguration of logical functions in [13].

3.1 Deficient variable instances

Given two states � � ¸ 
�� · � respectively from � � � � and � � � � , and
a variable $ , we note ¼ p � ¸ �($ � 
�� · �($ � q the measure of the common
ground of $ ’s value in each state. We say that variable whose in-
stances in a pair of nominal/faulty states have less common ground
than observable variables that discriminate between these states, are
deficient. We write that $ is deficient if:

¼Qp � ¸ �($ � 
�� · �($ �.q t¾½À¿�Á � a �NÂ�Ã ¼ p � ¸ ��c � 
�� · ��c � q¹ÅÄOÆ ��d � 7ÈÇ.É � (2)

where ¹ÅÄOÆ ��d � 7NÇ.É � is the number of misbehaving observed variables.
A misbehaving c is an observed variable that allowed the fault de-
tection, thus discriminating � ¸ from � · : c ’s value in � · better
fits ec than its value in � ¸ . When relation 2 is satisfied, we say¼ p � ¸ �($ � 
� · �($ � q is deficient. The expression of ¼ and the misbe-
having variables depend on the nature of the variables and the for-
malization of the uncertainty in the model.Ê

This corresponds to the general case of tracking multiple states simultane-
ously.Ë
Flows Ì�Í are abstracted from their real values for an improved readability.



In the case variable domains are discrete, as in [15], variable in-
stances have attached boolean labels. Misbehaving variables are ob-
servables labeled m in � ¸ and

s
in � · . We set up ¼ p � ¸ �($ � 
�� · �($ � q )m � p ��� Ä � � ¸ �($ �� � ��� Ä,� � · �($ � q , where

��� Ä returns the label of a given
instance. This case also applies to the measure of mode deficiencies.

In case variable instances are numerical intervals, as in [2], a mis-
behaving observed variable c is such that � ¸ ��c ���Àec )�� . We use¼ p � ¸ �($ � 
�� · �($ � q )!� ¸ �($ �	��� · �($ � .

In case a variable estimate is represented with a Gaussian, as in
[7], we say c is misbehaving if � ��ec�
 � · �F� p�y�� � ¸ 
�� · �.q �Z� ��ec�

� ¸ � , i.e. if its likelihood is higher in the diagnosed estimate than
in the nominally predicted one, given the probability of changing
mode. Here �(p�y�� � ¸ 
�� · �.q ) � p � ¸ �>x � 
�~O~�~ 
6x	� �.q� 7�� ��� � � ��� � � ��| 7 �
where Æ is the number of components, transiting from � ¸ to � · .
Given that � ¸���� � 6 ¸ 
�� ¸ � and � ·���� � 6 · 
�� · � , we define¼ as the measure of the common space enclosed by both density
functions o ¸ , o · . Given � � , � � the two intersection points of these
curves, and considering that � · ��� ¸ (otherwise, the notations are
inversed):

¼ p � ¸ �($ � 
�� · �($ � q )
�! B
"$# o ¸ �($ �&% $�l
�  K
 B o · �($ �&% $8l �(' # K o ¸ �($ �&% $ (3)

� � , � � are solutions of o ¸ �($ � ) o · �($ � . In the general case, at the
curves intersection points, the Mahalanobis metric �($ � 6 ��)�� " � �($ �
6 � of both estimates is identical.

3.2 Functional Deficiencies

Based on deficient variables, we now build the functional deficien-
cies.

Definition 2 (Functional deficiency). A functional deficiency *
for a model-based system � over a set of hybrid states

� )p � � � � 
�� � � � q is a set of variable instances of � % " that hold in
some states of � � � � , and that are deficient in some states of � � � � .
We denote as ���+* � ; � the reconfiguration set associated to * .

We write * as a conjunction of ¹ � mode instances and ¹$, mean
value instances, ¹]�Dl ¹ , )n¹ , as follows:

* ) -1 � ��� � � ��� � a 2 154 6/. 8 -
+ � ��� � � ��� �10 p32

7�� ��� � � ��� 4 � � � 7 ¸ �� 7 ¸ �($ + �.q (4)

Then � � 7 ¸ 
��65 · � ; � �+* � iff: ¼ p � 7 ¸ � 2 1 4 6 . 8 � 
��65 · � 2 1 4 6 . 8 � q and¼ p � 7 ¸ �($ + � 
�� 5 · �($ + � q are deficient for all 7
98 
Hk 
 � . In other words,���+* � includes all nominal and faulty states whose pairs show a de-
ficiency for all the instances of * . * is said to be complete w.r.t. a
reconfiguration set � ) iff � ) ) ���+* � . The complete * over

�
is

unique.

Property 1. If * , *:) are complete functional deficiencies, then if*;)�<(* , � �+* �=<0���+*;)(� .
Proof. If * ) <�* , then ���+* ) � contains at least all states of ���+* �
as these show deficiencies for all instances of * , plus potential states
that do not show deficiencies for instances in *(>?* ) .
Property 2. If * , *:) are complete functional deficiencies and���+* � )¥���+*;):� , then * )�*;) .

Proof. This comes from the uniqueness of a complete functional de-
ficiency over a given reconfiguration set � .

Given two tuples p9* � 
H���+* � �.q and p9* � 
H���+* � �.q , we write:p * � 
C� �+* � � q � p * � 
C���+* � � q ) p * � �@* � 
C���+* � � %S���+* � � q (5)p * � 
C� �+* � � q % p * � 
C���+* � � q ) p * � %@* � 
C���+* � �	�S���+* � � q (6)

We note * � �A* � , * � %B* � for short. From now on we consider a
functional deficiency to be complete when not explicitly mentioned
otherwise. Also, we sometimes write a functional deficiency as the
conjunction of its elements. The tuple p *�
C���+* � q is denoted a re-
configuration tuple. Finally, it is possible to prioritize6 a functional
deficiency:

��Æ �+* ��)
�2

7�� �
º2

+ � � � � � 7 ¸ �F� � � + · � , � � 7 ¸ 
�� + · � ; � �+* � (7)

Definition 3 (Core functional deficiency). The core functional de-
ficiency * , has its elements satisfied in all states of � � � � and de-
ficient in all states of � � � � . * , is unique for a given set

�
, and its

priority is equal to m .7
Note that at least all misbehaving variables in states of ���+* � do be-
long to the core deficiency, as does � ) s

in our example.

3.3 Minimal functionalities over maximal
reconfiguration sets

This section develops a characterization of functional deficiencies
whose size is minimal, while deficient over the largest number of
state estimates. The reason behind this effort is that the autonomous
system certainly wants to operate minimal changes while covering
the maximum states. From properties 1 and 2, the reconfiguration set
increases in size when the functionality decreases in size. A complete
functional deficiency of minimal size over a maximal reconfiguration
set is then easily characterized.

Definition 4 (Minimal functional deficiency over the maximal re-
configuration set). A minimal functional deficiency * has a max-
imal reconfiguration set ���+* � if it exists no other functional defi-
ciency *;) such that ���+* �DC0���+*;)(� and *;)	C(* .

The search for minimal functional deficiencies over maximal recon-
figuration sets leads to a set of functional deficiencies denoted mini-
max. A minimax functional deficiency represents the minimum set of
variable instances that are deficient over the same maximum set of
pairs of nominal/faulty states.

Proposition 1. Given two minimax functional deficiencies * and *E)
such that * ) �F*�G)H� , then ���+* ) �3)¥���+* � .

Proof. If * ) ) )I* ) �F* and * ) ) G)�� , then if * ) ) CH* , from defini-
tion 4 and property 1, it comes � �+* �3)¥���+*:) )	� . Similarly, *;) )�CJ*;)
yields � �+*;) )(� )¾���+*;)	� , so � �+* � )¾���+*;):� . The same result is ob-
tained if * ) ) )H* or * ) ) )�* ) with property 2.

K
Note that in this expression, there is no notion of fault criticality. Every
faulty state is assumed to have equal criticality but the probability of the
state is taken into account.L
Given that M;N�ODP and QEN�RSP have their state probabilities summing to

�
.



The previous proposition implicitly focuses the search on distinct
minimax functionalities. Thus functional deficiencies may be charac-
terized as disjoint sets of variable instances. This result brings flex-
ibility to the reconfiguration process under uncertainty, but is miti-
gated as the disjoint functions are not independent from each other
w.r.t. to the hybrid dynamics. In other words, they may not be recov-
ered independently. In reference to the recovery (planning) operation,
these functionalities are no serializable goals.

Proposition 2. The core functional deficiency * , is minimax.

Proof. This is trivial from definition 4. * , is also complete with���+* , �3) �
.

3.4 Functional Deficiencies Computation

1: Compute the complete * w.r.t. each reconfiguration set
� �
4 ¸ 
�� � · � , compute * , , and add them all to the agenda.

2: Iterate through the tuples �+* 7 
�* + � in the agenda.
3: If * , � * 7 G)H� , * 7 � � * 7 > z * 7 �F* , � .
4: Else if * 7 �/* + G) � , create a new function *;) ) * 7 �/* + and

add it to the agenda. Do * 7 � � * 7 >D*;) .
5: Else if * 7 )�* + , ���+* 7 � ) ���+* 7 �3% ���+* + � and remove the re-

maining function * + from the agenda.
6: * 7 is minimax when it does not intersect with other functions

anymore. It is removed to the agenda and returned.

Algorithm 1: Computing minimax functional deficiencies

The computation of the minimax functional deficiencies is per-
formed with algorithm 1. Its main principle is to progressively re-
duce simple complete, but non minimax deficiencies. The first step
updates the deficiencies for each combination of two states of

�
using

the measure of relation 2, and computes the core function. Iterating
through this set, step � prunes out any deficiency of its intersection
with * , . Step � prunes out non-disjoints functionalities of their in-
tersection and creates a new deficiency with it. Step � merges the
reconfiguration sets of similar deficiencies.

The algorithm is better understood by developing our example.
Step m gives: ; B��� ; B¡ : � B � + 
 B - /0��163�495ª@ * � B ��$ * � ��$; B� � ; K ¡ : � K �2� � Y)� T *,+ �W- /D��1.3�465�@* + 
 K - /:��?�EN1O;949G�@ * � B ��$ * � ��$* + 
 B - /:��163�465ª@; B� � ; R ¡ : � R �2����Y)� T *,+ �W- /D��1.3�465�@* � B ��$ * � ��$ *,+ 
 B - /0�21.3�465ª@; K � � ; B¡ : � X �2� � ')� T *,+ �W- /D��?�EN1O;949G�@* + 
 B - /:��163�465ª@ *�+ 
 K - /D�2163�465ª@* � B ��$ * � K �)$ * � �)$; K � � ; K ¡ : �	� � + 
 B - /0��163�495ª@ *,+ 
 K - /:��163�495ª@* � B ��$ * � K �)$ * � �)$; K � � ; R ¡ : �	
 � + �W- /:��?�EN1C;H49G�@ *�+ 
 B - /:��163�495ª@* � B ��$ * � K �)$ * � �)$* + 
 K - /:��163�465ª@; B��� ; K ��� ; B¡�� ; K ¡� ; R ¡ : � 0 � + 
 B - /:��163�465ª@ * � B ��$ * � ��$
We have * � ) * , so * � can be eliminated. Then reducing other

functions with * , :

� K � ���(Y)� T *,+ �W- /:��163�465ª@ *,+ 
 K - /:��?�EF1C;94HG�@
� R � ���(Y)� T *,+ �W- /:��163�465ª@
� X � � � ')� T *,+ �W- /:��?�EF1C;94HG�@ *,+ 
 K - /0��1.3�465�@ * � K ��$
�	� � + 
 K - /0��1.3�465ª@ * � K ��$
�	
 � + �W- /:�2?�EN1O;949G�@ * � K �)$ *,+ 
 K - /D��163�465ª@

1. * � � * � ) � ��� � �   �L� 4 6 )��C� v ¹ � , * L � � � ���� �   �L� 4 6 )��H� v ¹ � , � �+* L � ) � � �¸�� � �· 
�� � · � , * � )�* � >?* L )
�L� � 4 6 )�� � � � v % � , ���+* � �3) � � �¸�� � �· � . * L is added to the agenda.

2. * � �/* Ê ) � , * � � * Ë ) � , * � �/* K ) � , and * � ) � � 4 6 )
� � � � v % is minimax.

3. * � �B* Ê )�� , * � � * Ë ) � , * � �B* K )�� , * � )�* L , remove* L , ���+* � ��) � � �¸�� � �· 
�� � · � . * � ) ��� � ���   �L� 4 6 )��C� v ¹ � is
minimax.

4. * Ê �F* Ë )H* Ë , * Ê � � * Ê > * Ë )À� � �D���   �L� 4 6 )�� � � � v % � ,���+* Ê � )0� � �¸�� � �· � . ���+* Ë �3)0� � �¸�� � �· 
�� �· � .
5. * Ê � * K ) �L� 4 6 )�� � � � v % � , *���) �L� 4 6 )�� � � � v % � , ���+*�� � )

� � �¸�� � �· 
�� � · � , * Ê � � * Ê > *�� ) �����¥� � , ���+* Ê ��) � � �¸�� � �· � ,
and * Ê is minimax.

6. * K �!* Ë ) * Ë , * K � � * K > * Ë ) *�� . Remove *�� , * K )
�L� 4 6 ) � � � � v % � , ���+* K ��)�� � �¸�� � �· 
�� � · � . * Ë , * K are minimax.���+* Ë �3)0� � �¸�� � �· 
 � �· 
�� � · � .

Finally, the minimax functions are:

� 0 � + 
 B - /D��163�465ª@ * � B ��$ * � ��$ ,
� + � 0 @�� + ; B� � ; K �"! ; B¡ � ; K ¡ � ; R ¡ @

� K � + 
 K - /D��?�EN1O;949G�@ ,
� + � K @�� + ; B�"! ; K ¡ @

� R �2����Y)� T *�+ �W- /D��1.3�465ª@ ,
� + � R @�� + ; B� ! ; K ¡ � ; R ¡ @

� X �2����')� T ,
� + � X @�� + ; K � ! ; B¡ @

�	� � + 
 K - /D��1.3�465�@ * � K ��$ ,
� + �	� @�� + ; K � ! ; B¡�� ; K ¡� ; R ¡ @

� 
 � + �W- /D��?�EN1C;H49G�@ ,
� + � 
 @�� + ; K �"! ; B¡ � ; R ¡ @

At this point, a possible extension to the functional deficiencies is
to distinguish the continuous reduction of * 7 , that is its reduction to
variables in � , from the hybrid deficiency (made of both discrete and
continuous instances). Intuitively, as the modes are relaxed, there ex-
ist more states that satisfy the continuous reduction to a deficiency,
than the hybrid deficiency. For this reason, we say the latter leads
to reset solutions (as modes deficiencies are explicitly set up to be
recovered), as opposed to redundancy solutions (modes are unspeci-
fied, several component modes may recover the continuous deficien-
cies). We note #* the continuous reduction to * .

4 Reconfiguration of Functional Deficiencies

This section focuses on reconfiguring a functional deficiency by
identifying a set of goal states, and planning a recovery to those
states. Ideally, a goal state specifies a value to all component modes,
and may be inferred from a functional deficiency. In the case of a
hybrid uncertain state however, the constraints in the form of contin-
uous static/differential equations prevent a unique identification of
the modes from a given continuous state point. Hence we propose to
rely on an intrinsic property of hybrid systems, that is that the con-
ditional statements x naturally partition their behavioral space into
hybrid regions that we refer to as configurations. We refer the reader
to [2] for a formalization of these regions.

In the following, we denote as the goal functional deficiency * �
the functional deficiency to be recovered. Its selection is part of the
recovery process, and is detailed at the end of the section. For now,
we pick up a simple *,� as * , because its priority is maximal, and it
covers all state estimates.



Identifying the hybrid regions that enclose the values of * � is suf-
ficient as to form goals that we refer to as configuration goals (instead
of goal states). They correspond to reduced sets of both component
modes and equalities/inequalities over continuous variables.

Then, we must ensure that the goals are reachable by both the con-
tinuous and discrete dynamics, respectively equations � and transi-
tions y .

4.1 Configurations identification

Here, we determine the goal configurations through a process sim-
ilar to the model-based diagnosis consistency approach. Indeed, re-
configuration can be viewed as the problem of identifying compo-
nents whose reconfiguration is sufficient to restore acceptable behav-
ior, when diagnosis is the problem of identifying components whose
abnormality is sufficient to explain observed malfunctions [4].

4.1.1 Causal-graph of influences

A first difficulty lies in equations in � that may demand a time-
analysis for determining continuous variable values that are not set
in * � . A second problem lies in the non-existence of a bijection
between modes � and a particular continuous region of the state-
space, as constrained by � . These problems can be tackled by first
enhancing the model-based formalism with a causal representation
of � .

Definition 5 (Causal-Graph of Influences). The causal-graph of
influences of a set of equations � is an oriented graph

� ) �("'
�� �
where the variables in " form a set of nodes b 7 , and � a set of arcs
among these variables.

The causal-graph is a representation of relations among variables
in � that holds at any time step.

Definition 6 (Causal Influence). A causal influence in � , � 7 � + )
��b 7 
6b + 
6Ä,
6x � , is a directed arc between two variables b 7 and b + , withÄ the sign of the influence and x its activation condition.

Influences are drawn from the implicit causality in � . Variables
that are subject to no influence are referred to as the inputs of

�
.

Figure 2 pictures the causal-graph of the pressure expansion system.
In the following we replace equations in � with

�
.

In general some work is required to extract the causality from
static relations [14]. Ä#) z � m 
�m � stores the numerical positive or
equal/negative influence among variables. x ’s truth value in the hy-
brid state determines the activation/deactivation of the influence in
the graph. Unconditioned, the influence is permanently activated.
The activation conditions represent the causality changes in the dy-
namics.

Definition 7 (Configuration). A configuration for
�

(and by exten-
sion � ) is of the form / 7 x 7 .

A configuration delimits a region of behavior of � . In our exam-
ple, � � 4 6 )��H� v ¹   � � 4 6 )��H� v ¹   � � �0� �   � � �D� �   � � �� �   � 4 6 )�� � � � v % is a nominal configuration of the system.

4.1.2 Building configuration goals from functional
deficiencies

We write the MBD theory based on consistency [12] where for the
reconfiguration purpose, observations are replaced with functional

PSfrag replacements
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�
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Figure 2. Pressure expansion system causal-graph

deficiencies. A deficiency *,� has been characterized w.r.t. the state
uncertainty. We are now searching for the minimal sets of conditions
that are sufficient to restore * � .
Definition 8 (Reconfiguration candidate). A reconfiguration can-
didate for � given * � is defined as a minimal set � )z	��
� 
�~�~O~ 
���
. � <�� of influences such that

� % * � %��x 
 � %2~�~�~-%��x 
. (8)

is consistent.

Definition 9 (Reconfiguration conflict). A reconfiguration conflict
for � given * � is a set � ){z�� ,� 
O~�~�~ 
�� ,1 � of influences such that

� %F* � %Sx , � %�~�~�~ %)x , 1 (9)

is not consistent.

From
� % *�� , we seek for reconfiguration conflicts in

�
that are

such that influences in a conflict cannot be activated together given* � . For a deficient variable (node) b + of * � , we call ascending in-
fluences the influences that belong to the paths from the inputs/other
deficient variables, to b + . An ascending influence � 7 for b + is noted
� + 7 ) z	� 7 
9x 7 � . A conflict for b + is thus the set � + of its ascend-
ing influences z�� + 7 � 7�� ��� � � ��� ��� . � )��ªz�� + � + � ��� � � ��� � ¡ T�� is the col-
lection of conflicts over all deficient variables of *,� . The minimal
set of influences � that are candidates to the reconfiguration is ob-
tained similarly to the diagnoses in the MBD theory by computing
the hitting sets ( ��� ) over � [12]. We note � � ) ��� � 
  �� � Á��� �x 7 � a
diagnostic candidate, where � � is a set of influences. Consequently,
�0) � z�� � � � � ��� � � ��� �  � . We note !�0) � z�"� � � � � ��� � � ��� �  � .

1: Apply *�� to
�

.
2: Apply � · �+* � � to

� > * � .
3: Get the conflicts � .
4: Compute � )#�����$��� .
5: "�   * � are goal configurations.

Algorithm 2: Identifying reconfiguration candidates (
�
� � � � )

Consider our example again. Reconfiguring *,� ) * , with al-
gorithm 2 implies x � is satisfied (step m ), and based on remaining



variable instances in states in � · �+* � � the configuration of the sub-
graph

� >S*�� (
�

deprived of nodes and axis to nodes in *,� ) is de-
termined, in that case �x � is satisfied (step

�
). Tracing the ascending

influences in
�

, it comes two sets of conflicts (one per continuous
variable instance in * � ):^ ��� ��� ��� � B , ��� � K , � K	��
 K� $

,
� K � � _9`Fa�

��� B ��� � B 
 B� ���
,
� B 
 B� � B , � B � � _9`Fa�x � is satisfied in * , , and influences over � , � � and � � are activated

in all configurations, so it simplifies to:^ ��� ��� � K	��
 K� $ ���� B ��� � , � ��� ��� ,
��� B �

It comes � ) � z� x � � � and x �   * , thus is a valid goal con-
figuration (step � ). Reconfiguring the continuous reduction #* , leads
to more opportunities: x � is no more satisfied and ��� B ) z��x � � ,
thus � ) z�z��x � , �x � �³� and configuration goals are given byx �   x �   #* , .
4.2 Recovery

The recovery operation aims at bringing the system into the regions
defined by the configuration goals. Due to the hybrid dynamics, a so-
lution is a chain of transitions to the component mode goals, while
the continuous dynamics ensure the transition guards are succes-
sively satisfied. Solution sets of component transitions y � 
�~O~�~ 
�y 4
must satisfy

� %�� � � � %�y]� %�~�~�~ %�y 4 % * � %�"� (10)

is consistent, where the current time of the system is set to k � and
the initial state belongs to � � � � . � � ) z�y]� 
�~�~�~ 
.y 4 � is a plan for
the recovery. Noting k 4 the time at which transition y 4 triggers, the
continuous dynamics must satisfy

h�������i
�������
j

" �>k�� � %SxÅ�
� �(" �>k�� �� %)x �
� �(" �>k � �� %)x �
...
� �(" �>k 4 " � �� %)x 4
� �(" �>k 4 �� % * �

(11)

are consistent, where � �(" �>k + �� refers to the dynamics of relation
(1), is conditioned by x + ' � , and " � s � ) ½ Ç � ¡�Á�������� � � � 7 · � " 7· � s � .
We say relations (10) and (11) define a hybrid system planning prob-
lem. To our knowledge, the planning of hybrid systems has received
no attention yet. We believe that several control and planning prob-
lems may be casted into this formalism.

Relation (10) defines a probabilistic conformant planning problem
[8], where a set of transitions must bring the system to a set of prede-
termined goals, under uncertainty and without observing the system
full state. The plan maximizes the probability of the goal configura-
tion given the initial belief state � � � � . In our example, a stuck valve
cannot be re-opened, so no plan exists for functionalities * , and #* , .
A plan exists to * Ë for some initial states, � � ) z}| � , | � � � . * K has a
plan � � ) z}| � � .

Relation (11) defines a control problem where the continuous dy-
namics must be forced to successive x + through available inputs. A
model predictive control problem (MPC) solves on-line a finite hori-
zon open-loop optimal control problem subject to system dynam-
ics and constraints involving states and controls. Based on measure-
ments obtained at time k , the future dynamic behavior of the system

is predicted over a fixed horizon, and the controller determines the in-
put such that a performance criterion is optimized. This technique fits
well within the model-based autonomous system framework, given
that two key elements are already present, the model � , and the state
predictor (or estimator) � � � � . By using control and measurement
horizons of a single time step, a basic formulation of the MPC prob-
lem at time k isg � �>kIlÀm � ) ������

� �(" �>k � 
Og �>k ��
� �(" �>k � 
Cg �>k �� )

� 1 ' �
1 *��(" �! �� 
9g �! ���&%� 

*��("'
9g � ) �(" � " Ç �#"�� �(" � " Ç �l ��g � g Ç � "%$ ��g � g Ç �
" �>kIlÀm � ) o �(" �>k � 
Og � �>k ��s t u �(" �>k � 
Og �>k ��

where � and $ denote positive definite symmetric weighting ma-
trices, and gI� �>k,l m � is the optimal input used in the prediction atk�l m . Considering x over " in the form x :

� �(" � � s
, we note

#x : #
� �(" ��l'& ) s

its reduction to an equality, where & is a term that
ensures the threshold is later satisfied. The function is evaluated at k
with #x �>k � : #� �(" �>k ���l(& , and we note its inverse #x " � �>k � . The MPC
application to the control objective x + sets the setting point �(" Ç 
Cg Ç �
to � #x " �+ �>k � 
 s � . In our example, | � ’s guard gives #x " �) R �>k �3)À� � l�& ) .

Again, we face the fact that � � � � �>k � ) z,� � 
O~�~�~ 
�� � � likely con-
tains multiple state estimates. Thus the minimization must apply to
each *��(" 7 �>k � 
Hg �>k �� , returning gI� � 7 �>k�lVm � . We merge the opti-
mized input candidates according to the states estimated probabili-
ties: g � �>kIlnm � ) 2

7�� ��� � � ��� � � �(" 7 �>k ��9g � � 7 �>kIl0m � (12)

Finally, when x + is reached, transition y + should trigger, and MPC
then focuses on x + ' � . The last MPC set-point is * � .

Solving this control problem for complex system however requires
more research. First, the MPC community itself seeks for better inte-
gration of modern state estimation techniques within the control loop
[9]. Second, x ’s inverse is a problem in practice. The control could
focus on bringing the system state back to the geometrical center
of the goal configuration region instead. This is yet to be explored.
Third, optimality and especially, stability problems, if far out of the
scope of this paper, must be tackled in the case of control based on
multiple state estimates. Finally, it is likely that modern hybrid state
estimators are coupled with more powerful techniques such as Quasi-
Infinite Horizon NMPC [3]. Note that recent developments also pave
the way for stability and safety/reachability analysis of these con-
trollers [1].

4.3 Reaching the goals: safety and convergence

Considering the context of a faulty system, the reconfiguration pro-
cess should likely be safe, not making the situation worse. In our
case, the goal configurations identification may produce multiple
solutions, while not ensuring that they are reachable. In this sec-
tion we improve algorithm 2 by reducing the number of goal so-
lutions that are guaranteed to be reachable under monotonous con-
tinuous dynamics. To ensure the latter, and given a variable $ that
appears in *�� (instance $"� ), the sign of �L� ¸ �($ � � � · �($ �� is stud-
ied, where ���+* � ��) �L� ¸ 
H� · � . Here, we use � ¸ �($ � � � · �($ � )
$ � � ½ Ç � ¡ Á�������� � � � 7 · �� 7 · �($ � . Algorithm 2 is modified such that �



becomes � " , the set of influences to be deactivated, while � ' , the
set of influences to be activated is constructed as follows:

� Given a path of ascending influences z	� 7 � 7 B 
�~O~�~ 
 � 7 � � + � from b 7 tob + involved in * � , if b 7 p � ¸ ��b + � � � · ��b + � q  1 � 7 B � � � ��� 7 � Ä 1 � s ,
then for each x 1 that is not satisfied, add � 7 8 � 7 8 � B to � ' .� Otherwise, if the above criterion is not satisfied, while x 1 is, then
add � 798 � 7:8 � B to � " .

This corresponds to activating every ascendant path whose combined
influences have a beneficial effect to the restoration of *!� .

1: Apply *,� to
�

.
2: Apply � · �+* � � to

� > * � .
3: Get the conflicts � ' , � " .
4: Compute � ' )#�����$� ' � and � " ) �����$� " � .
5: Do � )#� '�� "� " and eliminate inconsistent configurations.
6: �   *�� are goal configurations.

Algorithm 3: Identifying reconfiguration candidates ( � � o v � � � � � )

Back to our example, we reconfigure #* Ë ) � � � s
. Step � of

algorithm 3 gives � '� K ) z�� ��� K� � � � , � "� K ) z}� ����� K� s � , thus
� ' ) z�z�x � �³� , � " ) z³z��x � ��� . The solution is the same as re-
turned by algorithm 2 but it is now ensured that opening � � brings
the flow back into the right direction.

The safety may not be ensured when negative and positive effects
to a variable are activated via the same condition, as over � � in our
example. If ������� was not considered being a constant, a numerical
analysis would have been required here.

4.4 Prioritized selection of functional deficiencies

Our general strategy to the reconfiguration of the functional deficien-
cies explores reset solutions first, then redundancy solutions (contin-
uous reductions) in prioritized order. In case of plan failure the next
deficiency is selected (algorithm 4). In our example, � �· and � � · have

1: Compute functional deficiencies with algorithm 1
2: Identify goal configurations with algorithm 2 or 3.
3: Find a plan, in case of failure move to the next deficiency, in

prioritized order.
4: Apply MPC using � � � � as the predictor.

Algorithm 4: Prioritized selection of functional deficiencies

much lower probability than � �· as they correspond to double faults.* , is subject to plan failure. * K : � 4 6 ) � � � � v % is its own goal con-
figuration and has a plan | � whose guard is � � �D� � . MPC generates
the pressure input ��� to reach that level. Note that depending on the
real initial state, the reconfiguration may have no effect. The oper-
ation does not harm the system as we consider that maintaining a
nominal level of pressure does not harm even the faulty system, and
may help discriminate among the estimates. For example, if recon-
figuring * K fails, � �· , and potentially � �· are eliminated.

5 Summary, Existing works and Perspectives

We’ve presented a methodology to the automated reconfiguration of
functional deficiencies. The deficiencies are identified by comparing
predicted and diagnosed states, and then partitioned and prioritized

over the state estimates. Goals are further identified from the defi-
ciencies. Planning and MPC techniques are used in common to move
the system toward the goals.

To our knowledge, automated MBReconf has not yet received
much attention. A pioneer work, [4], explores the analogy between
the problems of diagnosis and reconfiguration. [13] examines the use
of diagnosis for the reconfiguration and develops logical functional-
ities. Goal identification and safe planning have been studied in [16]
in the case of qualitative models. We are not aware of any work about
the planning of hybrid systems.

Several improvements are planned. First, it appears that restoring
a single minimax deficiency does not restore a full nominal state: an
alternate strategy would be to combine the deficiencies so to restore a
single nominal state that would be selected to maximize the chances
of a successful reconfiguration w.r.t. the uncertainty on the faulty es-
timate. Second, the � � o v � � � � � algorithm should be enhanced to
tackle more complex dynamics. Third, we would like to explore and
formalize the planning of hybrid systems.
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